If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2t^2+t-120=0
a = 2; b = 1; c = -120;
Δ = b2-4ac
Δ = 12-4·2·(-120)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-31}{2*2}=\frac{-32}{4} =-8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+31}{2*2}=\frac{30}{4} =7+1/2 $
| 5(x+3)=4x+18 | | 9b+1=19-10b | | 6(3-4-x)=3x+6 | | -4(6x+2)=-24x+8 | | -5/2(4x-6)=10 | | -9=m/2 | | 4=3v-5 | | 3/x-5=-7/x+5 | | 4/3=1/5(2.5x+10/3) | | 9(x-6)+5(x+6)=6x-6 | | 5(7x+4)=4x+6 | | 7(x+17)=17x-6 | | 18x+1+11x+5=180 | | -4.3=3.8-0.09x | | 64=2x-9 | | 7(x+17)=17-6 | | 6a-4=@4 | | 5(x-6)=5x+19 | | -5/8m=1/2 | | -t−5=-8+2t | | 2n+2n-6=8 | | -3p=-4p+6 | | -10c+2c+6=3-8c | | 84=1.5x | | n÷20=2 | | 6x+3(-3+2x)=1-x | | 6/x-8=2/x-6 | | 8p^2-12p+22.5=0 | | 1/2x+1/7=16 | | 6x-3=2-(-6x-2) | | 2x+9x=3x+4 | | 6=r-8 |